

De l'inspection visuelle au diagnostic

Etude de cas: câbles de précontrainte extérieure de viaducs à tabliers en caissons préfabriqués

SOMMAIRE

Contexte et objectifs

Méthodologie

Inspection: résultats et préconisations

Diagnostic : programme et résultats

Conclusion de l'étude de cas

Caractéristiques principales

Nouvelle infrastructure construite entre 2008 et 2012

- Ouvrages d'art et tunnels de tous types
- 9 660 mètres en viaduc (17 viaducs)
- Deux viaducs à tabliers construits par encorbellements successifs - Linéaire cumulé = 1 078 mètres
- 11 viaducs à tabliers en caissons préfabriqués
 Linéaire cumulé = 7 900 mètres

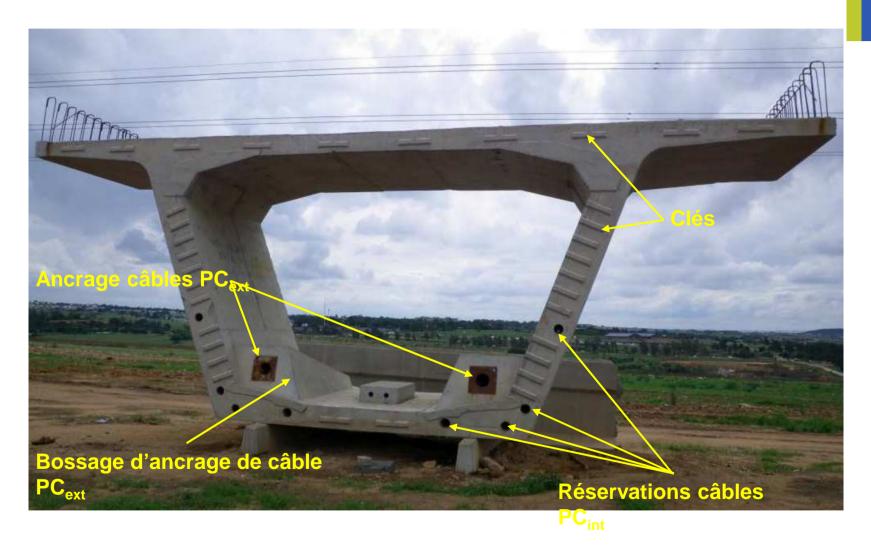
Caractéristiques principales

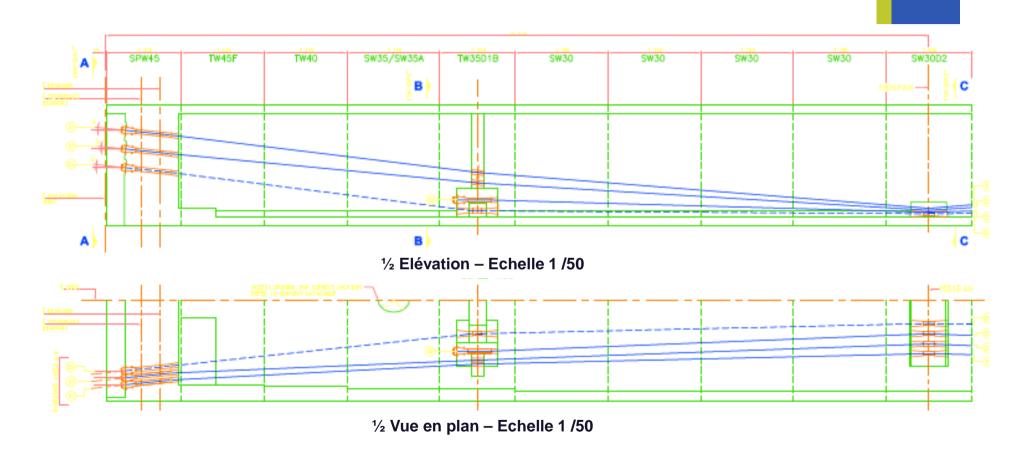
Viaducs à tablier en caissons préfabriqués

- Longueur des viaducs: de 174 à 3280 mètres
- Travées-type: de 22 à 54 mètres (de 10 à 22 éléments)
- Précontrainte intérieure et extérieure

Précontrainte extérieure

- Gaines PEHD
- Torons insérés individuellement dans la gaine
- Injection au coulis de ciment
- 4 à 8 câbles par travée, soient plus de 1000 câbles...


Vues générales


Vues générales

Voussoir témoin

Caractéristiques générales

Précontrainte extérieure – Elévation et vue en plan (4 à 8 câbles par travée)

Intérieur d'un tablier

Evaluation de l'état initial des ouvrages

Enjeux

Donnée d'entrée de base de la surveillance préventive

Aspects contractuels: ouvrages sous garantie

Ouvrages exceptionnels « iconiques »

Durée de vie attendue: 100 ans

Méthodologie

Inspection Détaillée Initiale

Focus sur la précontrainte extérieure

Examen visuel : ancrages, déviateurs, gaines

Sonnage des gaines: détection des « sonne creux »

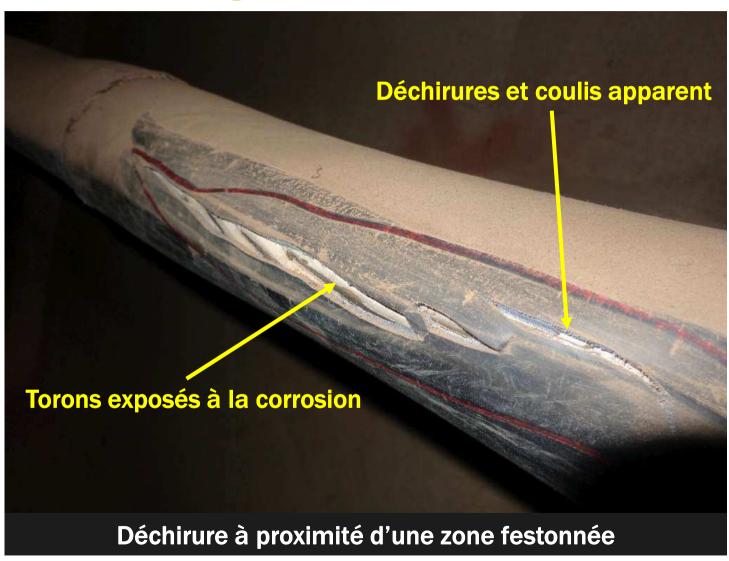
176 travées indépendantes (7 900 mètres de tablier)

Plus de 1000 câbles...

Dégradation des gaines - Parties courantes

Dégradation des gaines - Déviateurs

Entrée de câble dans déviateur Déformation de la gaine et finition rapide du déviateur


Déformations anormales des câbles

Déformations anormales des câbles

Dégradation des gaines - Déchirures

Vides entre éléments de gaine

Causes probables

- Mauvaise réalisation des joints
- Ouverture des joints lors de la mise en tension

Conséquences: création de zones vulnérables

Recommandations

- Réfection des joints entre éléments
- Vérification de la durabilité des réparations

Zones de « sonne creux »

Cause probable: manque de coulis d'injection

Conséquences: création de zones vulnérables

Recommandations: investigations complémentaires

Fissures et épaufrures en entrée de déviateur

Causes probables

Défauts de réalisation des déviateurs

Mise en œuvre de la précontrainte

Conséquences: fragilisation du déviateur et du câble

Recommandations

Réfection des déviateurs

Vérification de la durabilité des réparations

Déchirures des gaines en entrée de déviateur Causes probables

- Mise en œuvre de la précontrainte
- Défauts de réalisation des déviateurs

Conséquences

- Fragilisation du câble en zone sensible
- Corrosion des torons apparents

Recommandations

- Réfection de la gaine et du déviateur
- Vérification de la durabilité des réparations

Festonnage des câbles

Causes probables

- Existence de torons non tendus ou rompus
- Mise en œuvre de la précontrainte

Conséquences

- Mauvaise répartition des efforts de précontrainte
- Fragilisation du câble en zone sensible

Recommandations: investigations complémentaires

Festonnage, déchirures gaine, torons apparents

- Causes probables
- Existence de torons non tendus ou rompus
- Mise en œuvre de la précontrainte

Conséquences

- Mauvaise répartition des efforts de précontrainte
- Fragilisation du câble
- Corrosion des torons apparents

Recommandations

- Investigations complémentaires
- Etude de réparation

Synthèse

Recommandations

Réparations

- Joints entre éléments de gaine
- Déviateurs

Investigations complémentaires

- **Etude documentaire**
- Sondages sur zones « sonne creux »
- Auscultation des zones festonnées

Surveillance: efficacité et durabilité des réparations

Réparations

Joints entre éléments de gaines PEHD

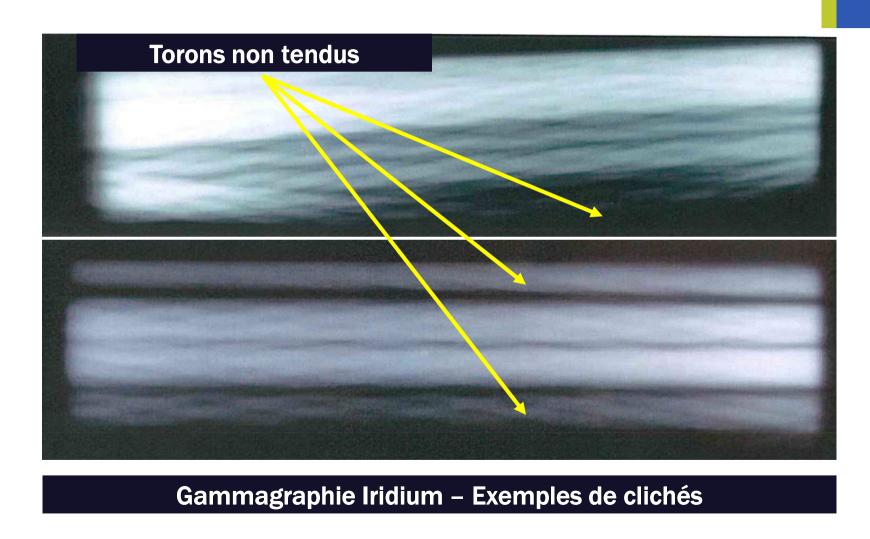
Réparations

Déviateurs

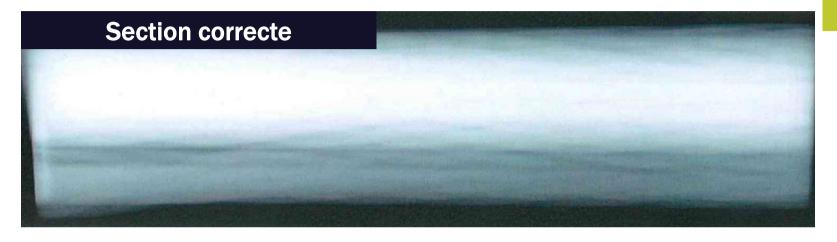
Programme

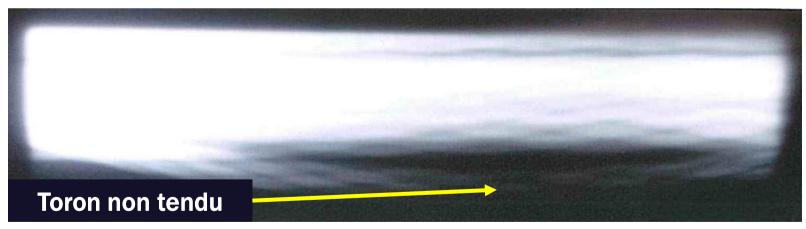
Analyse documentaire

Sondages destructifs: vides d'injection


Gammagraphie Iridium: tension / rupture de torons

Sondages destructifs: ouverture des gaines


Résultats - Sondages destructifs



Résultats - Gammagraphie Iridium

Résultats - Gammagraphie Iridium

Gammagraphie Iridium – Exemples de clichés

Résultats - Ouverture des gaines

Résultats - Ouverture des gaines

Suites

Application des garanties constructeur

Etude de réparation

- Quantité et localisation des câbles défectueux (< 5 %)
- Modélisation / Rétro-engineering
- Remplacement ou ajout de câbles

Surveillance particulière après réparation

Inspections ciblées fréquentes (câbles et déviateurs)

CONCLUSIONS

Etude de cas

- Grand projet : risques importants (échéances & volume)
- Importance de l'Inspection Détaillée Initiale
- Importance du positionnement « tierce partie », notamment pour justifier « sur pièces » l'applicabilité des garanties
- Concordance entre
- Contraintes « publiques » (inauguration, mise en service, garanties)
- Contrôle extérieur et suivi du chantier
- Evaluation correcte, complète et objective de l'état initial
- Actions nécessaires pour garantir la durée de vie (100 ans)

MERCI POUR VOTRE ATTENTION

